

JPL

Adaptive Network Communication Shared Net IP Communications Layer

James McKelvey
Section 369
November 4, 2002

Introduction

JPL

- Developed as part of SharedNet 6
 - Distributed battlefield information system
 - Delivers "Common Tactical Picture" to distributed system of clients and servers
 - Runs over existing networks (EPLRS, SINCGARS, WARNET)
 - Provides a range of quality-of-service

Network Characteristics

- Bandwidth often limited
- Heterogeneous and often unreliable
- Nodes go in and out of communication, must be updated
- Requirements Fight One Another

Approach: Communication Abstractions

- Subsystem of SN
 - Independent, separately fieldable
- Two logical pieces:
 - Abstract logical "Channels" that specify delivery requirements and are protocol and network independent
 - Communication engine that picks the protocols and guarantees the level-of-service.
- Users interface primarily through the channel abstraction
- Written in standard Java

Capabilities: Channels

- Provide an abstract delivery mechanism called Channels.
 - Channels define the properties of message delivery including level-of-service, priority, and ordering.
 - Comm nodes are specified as Senders and/or Receivers of a channel.
 - Nodes may be added dynamically.
 - Channels support M receivers and N senders.
 - Channels do not specify delivery protocols.
 - User Interface is simplified, because channels define most of the communication properties.
- Channels are the primary user interface

Channel: Properties

Priority

- Higher-priority messages are processed ahead of lower
- Higher priority messages get first crack at available bandwidth

Ordering

 Messages may optionally be held to guarantee delivery in the order they were originally sent by the originator

Timeliness

 Channels define a time interval during which the message is considered to be still valid. This may be infinite. The time interval is used to optimize message delivery.

Channel: Quality of Service

- Sender has increasing awareness of message delivery as service level increases
 - Datagram
 - No knowledge; message delivered if possible during specified timeout interval
 - Managed
 - No knowledge, except that if timeout is infinite, message will eventually be delivered if the sender does not restart
 - Acknowledged
 - Acknowledgement (positive or negative) delivered to sender; if timeout is infinite, acknowledgement will never be negative, and message will be delivered if the sender does not restart
 - Persistent
 - Similar to Acknowledged, but message delivery survives restart

Communication Engine

- Picks protocol for delivery
 - UDP, multicast, TCP
- Implements level-of-service under protocol
 - Rerequest of lost messages (whole or in part)
 - Even multicast may be reliable
- Implements message disassembly/assembly
 - Large messages split into fixed-size packets
 - Adapts packet size to network requirements
- Monitors and Controls Network Bandwidth
 - Hierarchical, I.e., controllable by subnet

Communication Engine (Cont.)

- Detects nodes no longer in communication
 - Messages held for delivery (until timed out)
- Keeps track of statistics
 - Message and bandwidth statistics
 - System and node state
 - Available to local and remote nodes
- Dynamically reconfigurable
 - Rule sets and parameters control decision making
 - Both may be dynamically determined or modified by administrators

Concept of Operation: Engine

- Distributed application
 - All nodes are peers
- Logic is decentralized
 - Decisions are localized
 - Decisions are driven by network state and configuration
- Client process creates comm object
 - Provides initial property list
 - Further changes can be made dynamically
- Client sets up communication
 - Elects to receive data on certain channels
 - Elects to send data on certain channels
 - Prepares to receive status messages

Protocol Selection

JPL

- Prefer multicast over point-to-point
 - When there are two or more known recipients
 - When number of potential recipients is unknown
- Prefer UDP over multicast
 - When there is one known recipient
- Prefer TCP
 - Only when channel is marked as high-data-rate
- Ultimately controlled by configuration
 - Any and all protocols may be disallowed, allowed, or forced
 - Preferences are controllable by subnet

Protocol Selection (cont.)

JPL

- Multiple protocols may be required
 - When subnets have different requirements
- Multiple transmissions may be required
 - When multiple protocols are used
 - When multicast cannot be used
 - When subnets specify different multicast addresses
- Transmissions are minimized
 - When multicast addresses span sets of subnets
 - Whenever possible

Reliable Communication Over UDP and Multicast

- Receiver is responsible
 - Sender may not know all recipients
 - Receivers request message retransmission
- Rerequests are multicast
 - When possible
 - All recipients monitor rerequests from other nodes
 - Rerequests are randomized and accumulated
 - The idea is to eliminate "rerequest storms" when multiple nodes miss the same packet
- Rerequested messages are sent to all
 - All original recipients receive the resent packets
 - Required because some nodes may have suppressed their rerequests

Summary

JPL

- Connection-less reliable communication
 - Provides detailed control
 - TCP supported for networks that can really use it
- Reliable multicast
 - Reduces network loading
- Configurable at subnet level
 - Supports heterogeneous networks
- Channels support most application topologies
 - Peer-to-peer
 - Client-server
 - Chat
- Channels define data requirements
 - Enhances network independence